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1. Introduction

Pandemic is one of the biggest threat of mankind. The
outbreak of the Coronavirus disease (COVID-19) has nearly
paralyzed the global economy and caused mass disruptions
in people’s daily lives. One of the methods to control the
virus spread while optimally maintaining the normal social
operation is contact tracing. Contact tracing is the process of
identifying who has come into close contact with a infected
case so that those suspected cases can be notified and
possibly quarantined. Traditionally, manual contact tracing
is conducted by interviewing infected patients about their
recent tracks and possible contacts, which is labor-intensive
with delayed notification. As the smartphone has become
inseparable with people, automated contact tracing, which
automatically collects contact event with prompt notifica-
tion, was proposed.

The existing automated contact tracing technologies
can be categorized as location-aware contact tracing and
location-oblivious contact tracing. Location-aware contact
tracing requires information that reveals users’ location,
such as GPS, Wi-Fi and QR code. GPS-based contact tracing
determines contact event by matching the geolocations col-
lected by smartphones. With Wi-Fi-based contact tracing,
the smartphone periodically scans the surrounding Wi-Fi
access points and determines contact event by matching the
access point vector. QR code-based contact tracing requires
the users to manually scan the QR code placed in public
places and matches the QR code location to determine
contact event. Although possessing several advantages over
manual contact tracing, location-aware contact tracing poses
severe privacy concern. The location-oblivious contact trac-
ing directly detects the contacts between devices without
knowing locations, which is privacy-preserving. The ultra-
sound-based contact tracing uses the arrival time difference
between Bluetooth chirps and ultra-sound waves to measure
the contact distance, however, the takeover of the micro-
phone causes inconvenience for smartphone users. As shown
in figure 1, Bluetooth low energy (BLE)-based contact trac-
ing assigns each user with a random ID and the users’
smartphones exchange their IDs when encounter, contact
event is determined by matching the infected person’s ID
with the contact history. As it is implicit, energy-saving and

(a) Contact Event Collection.

(b) Suspected case detection.
Figure 1. BLE-based contact tracing. (a) Each smartphone is assigned with
a random ID and exchanges IDs when encounter with other smartphones.
(b) The infected patient will publish his/her ID which is subsequently
matched with other users’ contact history to determine suspected cases.

privacy-preserving, BLE-based contact tracing is commonly
adopted.

Since the BLE signals could travel much farther than
distance of close contact, BLE contact tracing needs to
detect proximity based on the fact that the received signal
strength (RSS or RSSI) attenuates as distance increases.
However, as the BLE RSSI is very noisy, the existing
BLE-based contact tracing approaches suffer the unreliable
proximity detection. Generally, the main causes of the noises
are complex building environment and phone carriage state.
In complex building environments, the BLE signals may
reflect, diffract and scatter before reaching to the receiver
leading to the RSSI change, which is called multi-path
effect. Also, various phone carriage states could render the
signals covered by clothes or human body, causing different
degrees of signal blocking. In reality, these two causes often
co-exist which further complicates the scenarios. Therefore,
how to accurately detect proximity using the noisy BLE



Figure 2. Ground truth description. d and d− k respectively refers to the
maximum and minimum distance between receiver and transmitter

RSSI poses a huge challenge for BLE contact tracing.
To overcome this issue, we propose a 2-stage deep

learning-based classifier for BLE proximity detection. Our
contributions are 1) we use BLE RSSI histogram repre-
sentation to reduce the multi-path effect, 2) we introduce
IMU data to compensate for the signal blocking from phone
carriage states, 3) we leverage a deep learning-based clas-
sifier to model the impact of multi-path effect and phone
carriage state on proximity detection, 4) our model is both
storage efficient and computationally efficient due to the 2-
stage structure, 5) we have verified our idea and got a very
good result on Too Close for Too Long (TC4TL) Challenge
held by The National Institute of Standards and Technology
(NIST) in coordination with MIT PACT project.

The rest of the paper is organized as follows.

2. Dataset Description

We participated and verified our model in the Too Close
for Too Long (TC4TL) Challenge, which is held by The
National Institute of Standard and Technology (NIST) in
coordination with the MIT PACT project, aiming for accu-
rate proximity detection for BLE-based contact tracing.

As most of the data competition, a training dataset, a
validation dataset and a testing dataset are given for model
training, hyper-parameter tuning and model evaluation, re-
spectively. To mimic the real world scenarios, the data
are collected in diverse environment with different carriage
states by different users. For example, the user may face to
the transmitter or turn back to it, causing different degrees
of signal blocking. As the users are free to move during
the data collection, the distance may change, therefore, two
parameters d and k are used to describe the ground truth.
As shown in figure 2, d is the maximum distance between
receiver and transmitter and d − k refers to the minimum
distance between receiver and transmitter, in other words,
the possible location of receiver should be within the shaded
region. Besides d and k, dataset also provides common
smartphone embedded sensor readings collected in different
time periods.

The goal of the challenge is to detect proximity on the
testing data. The proximity threshold is denoted as D, if the
maximum distance d is smaller than D, it is classified as a
contact event, otherwise, it is classified as no contact. In the
challenge, k ∈ 0.9m, 2.1m and D ∈ 1.2m, 1.8m, 3.0m. The

data are split into fine-grained dataset and coarse-grained
dataset according to k. Therefore, the goal of the challenge
is to determine contact event on fine-grained and coarse-
grained dataset based on different proximity threshold.

3. System Description

3.1. System Overview

The system overview is shown in figure 3. The system
input is the raw data from smartphone embedded sensors and
output is the event type which is either contact event or no
contact. Our model is consist of two stages. In stage 1, the
raw data is converted to a fixed-length vector. In stage 2, a
pre-trained deep learning classification model is employed
to determine the event type using the fixed-length vector.
In practice, smartphone keeps running stage 1 converting
massive data into fixed-length vectors and stores them into
the database, once the the user has the risk of exposure
to virus, the stage 2 would fetch vectors from database and
estimate the event type. Next, we will first introduce the data
source selection, then explain how our approach reduces the
multi-path effect and carriage state influence, in the end, the
reason for selecting classification model is discussed.

3.2. Data Source Selection

Nowadays, smartphone has been embedded with several
sensors that are available for proximity detection. In this
section, we will focus on analyzing these data sources and
their influences on BLE RSSI.

Overall, BLE RSSI, IMU data, magnetic field intensity
and TxPower are selected as data sources for our model.
BLE RSSI is the main source for proximity detection. As
mentioned, higher BLE RSSI value indicates the closer
distance, so RSSI values contain the distance information.
IMU data is consist of acceleration and angular velocity,
and acceleration can be further decomposed to linear accel-
eration and gravity, which are high and low frequency com-
ponents of acceleration, respectively. As the gravity always
points to ground, it is a good representation for phone pose.
The angular velocity and linear acceleration capture the hu-
man dynamics since they are sensitive to phone movement.
Therefore, IMU data represent phone carriage states. High
intensity of magnetic field could rise the reflective index
of air and increase the scattering probability of the BLE
signals. Smartphone magnetometer can help to identify this
scenario. TxPower is a value describing the transmission
power of the signal transmitter, which is delivered along
with the BLE handshaking signal. It serves as a very useful
calibration for heterogeneity of devices.

Some other data sources are also provided by smart-
phone, we abandon them as they are either irrelevant to
proximity detection or duplicated with the selected sources.
For example, the correlation between altitude and BLE RSSI
is not observed, and phone attitude is redundant since it is
calculated by IMU data and magnetic field.



Figure 3. System overview. The input are raw data from smartphone embedded sensors. In practice, smartphone keeps running stage 1 converting massive
data into fixed-length vectors and stores them into the database, once the user has the risk of exposure to virus, the stage 2 would fetch vectors from
database and estimate the event type.

3.3. BLE Histogram Representation

As aforementioned, the higher BLE RSSI value indicates
closer distance, but the multi-path effect renders the signal
noises causing the unreliable proximity detection. The exist-
ing approaches try to eliminate these noises by employing
filters, such as calculating mean value or Kalman filter, these
approach can not adapt to diversity of environments in that
the BLE RSSI variances caused by multi-path effect are not
always centered or agree to Gaussian distribution.

In our model, instead of eliminating the noises, we
utilize them to reduce the multi-path effect. As illustrated
in figure 4, the transmitted signals go through several paths
experiencing different degrees of signal attenuation before
reaching to the receiver, causing the RSSI spread which can
be represented by histogram. Therefore, we convert the BLE
RSSI value to histogram representation to reflect the multi-
path effect.

3.4. Carriage State Feature Extraction

Many phone carriage states would cause the BLE signal
covered by clothes or human body, such as phone carried in
pocket or in bag, causing different degrees of signal block-
ing. Therefore, identifying these carriage states provides
signal blocking information which contributes to better BLE
proximity detection. As the phone carriage states are directly
reflected by IMU data, we extract features from IMU data
to represent the carriage states.

IMU data are consist of angular velocity, linear acceler-
ation and gravity, each of them is a three-dimensional vector
in the smartphone frame. The elements of gravity vector are
gravitational projections on the three axes of smartphone
frame. As the gravity always points to the earth’s core, this
gravity vector actually represents the phone inclination to
the ground or phone pose. Therefore, phone pose reflected
by gravity is a good representation of phone carriage state.

As shown in figure 5, however, similar phone poses may
be correspondent to different carriage states, which means
that the single phone pose is not enough for representing
the carriage state. As aforementioned, linear acceleration is
the high frequency component of acceleration, both linear
acceleration and angular velocity are sensitive to phone
movement. Figure 6 shows the different walking signal

(a) Multi-path effect.

(b) BLE RSSI histogram representation.
Figure 4. BLE RSSI spread and histogram representation. (a) Multi-path
renders the BLE RSSI spread. (b) RSSI spread can be represented by
histogram.

patterns of linear acceleration under different phone carriage
states, even their phone poses are similar. Therefore, we
could leverage the human dynamics, such as walking, to
further distinguish more phone carriage states by extracting
features from linear acceleration and angular velocity.

Specifically, we extract time domain features from grav-
ity to represent phone pose and extract both of time and
frequency domain features from linear acceleration and an-
gular velocity to capture dynamic information.



Figure 5. Phone poses and carriage states.

3.5. Deep Neural Network Classification Model

In the previous sections, we have discussed the usages
of magnetic field intensity and TxPower, the histogram
representation of BLE RSSI and features extraction from
IMU data, however, how to use these processed sources to
detect proximity remains unsolved. Unfortunately, the BLE
signal propagation is an extremely sophisticated process
which is impossible to manually analyze even if given the
unchanged environment. Therefore, deep learning model is
leveraged to detect proximity using these processed sources.
Specifically, these sources are concatenated to a fixed-length
vector which serves as the input of the deep learning model.
Since the processed sources contain no spatial or temporal
information, vanilla deep neural network with dropout layers
is chosen.

As mentioned in section 3, the dataset provides different
data sources, the ground truth distance and proximity thresh-
olds. Both of the regression and classification model can be
applied in proximity detection. In the training phase, the re-
gression model uses the ground truth distance as label while
the classification model converts the distance to event type
by comparing it with the proximity threshold. In the testing
phase, classification model directly outputs the event type
while the regression model converts the predicted distance
to event type. Basically, the main difference between these
two models is when to convert distance to event type. We
adopt classification model because the regression model has
trouble dealing with the boundary points. Figure 7 illustrates
the regression and classification model training process on a
same boundary point. The coordinate represents the output
distance and the red dotted line is the proximity threshold.
Due to the classification model has two output units, we
define the no contact score over contact event score to
be pseudo-distance, in other words, greater pseudo-distance
indicates greater probability of no contact. In the training
phase, the regression model will optimize the prediction
to the ground truth which is very close to the proximity
threshold, therefore, it is likely to be wrongly classified
with a little error. Whilst the classification model’s ground
truth has been converted from distance to event type which
will optimize the prediction to be away from the proximity
threshold.

4. Evaluation

Besides high accuracy, our design is also storage and
computationally efficient.

Generally, it is infeasible for smartphone to employs
deep learning model with IMU data in contact tracing.
IMU data directly reflect the phone carriage state, though,
smartphone could produce several gigabytes of IMU data
in two weeks, which is a huge burden for smartphone
storage. So, IMU data need to be processed once produced.
Deep learning model is able to extract high level features,
however, at the cost of computational efficiency due to its
complex structure, frequently running deep learning model
is impossible for smartphones. This dilemma, however, can
be solved by our 2-stage model. As shown in figure 3, we
leverage the light-weight algorithm to convert massive data
into fixed-length vector in stage 1 and employ the com-
plicated deep learning model to detect proximity in stage
2. Therefore, the smartphone can keep running the stage 1
and stores the vector into database. Only if the smartphone
owner has the risk of exposure to virus, our model will
fetch the vector from database and detect proximity. In this
way, our design is both storage efficient and computationally
efficient.



Figure 6. Linear acceleration under different phone carriage states.

Figure 7. Illustration of the regression and classification model training
process on a same boundary point. Pseudo-distance is defined as the
probability of no contact over the probability of contact event.


